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J. Phys. A: Math. Gen. 17 (1984) 2607-2619. Printed in Great Britain 

On the convergence of the Rayleigh ansatz for hard-wall 
scattering on arbitrary periodic surface profiles 

W A Schlup 
IBM Zurich Research Laboratory, 8803 Riischlikon, Switzerland 

28 February 1983, in final form 6 March 1984 

Abstract. The plane-wave ansatz for the scattered waves is convergent only if, roughly 
speaking, the surface profile is ( i )  not too deep and ( i i )  sufficiently smooth. This convergence 
is investigated for general one-dimensional corrugations by means of an asymptotic analysis. 
The results are explicitly given for a three-term Fourier series and for analytic approximations 
to linear profiles with discontinuous slopes. A relation between the convergence and the 
maximal curvature is established for triangular corrugations, and used for the definition 
of a pseudoinvariant which is slowly varying for various corrugation profiles. 

1. Introduction 

The scattering of waves from a corrugated surface was first studied by Rayleigh using 
a plane-wave ansatz. This so-called Rayleigh hypothesis is only valid if the periodic 
corrugation is not too steep. Petit and Cadilhac (1966) were the first to prove that the 
Rayleigh ansatz diverges for a sinusoidal corrugation, when the ratio depth to period 
2h/a>0.1425. Later, Millar (1969, 1971) proved that this is exactly the limit of 
convergence, and that below this limit the Rayleigh hypothesis is valid. In 1978, Hill 
and Celli used an asymptotic evaluation of the scattering amplitudes to discuss the 
convergence of the plane-wave ansatz to the solution of the Helmholtz equation. They 
found the limit of the two-dimensional sinusoidal profile to be 2h/a  = 0.592. Van den 
Berg and Fokkema (1979) investigated the convergence for gratings with periodic 
profiles exhibiting discontinuous slopes by using analytic approximations with finite 
Fourier series. In a later paper (van den Berg and Fokkema 1980) they extended these 
results to non-periodic profiles as given by a perturbation in a plane surface. 

The purpose of this paper is ( 1 )  to show that the same conditions for convergence 
found by Hill and Celli can be derived from the eikonal approximation of the scattering 
problem; (2) to use the approach of Hill and Celli to explain the influence of the 
different profile parameters on the convergence limit for some typical profile functions; 
(3) to find a convergence parameter (other than h / a )  allowing estimation of the 
convergence limit from Fourier coefficients and/or simple geometrical characteristics 
like the minimum radius of curvature or the maximal amplitude of the corrugation. 
Though an exact criterion for the limit of the convergence cannot be proved, a rough 
estimate is possible since a nearly constant or slowly varying convergence parameter, 
a pseudoinvariant, can be defined. 

0305-4470/84/ 132607 + 13$02.25 @ 1984 The Institute of Physics 2607 
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2. Definitions and mathematical preliminaries 

The wavefunction $ ( R ,  z)  with R = (x, y )  should satisfy the Helmholtz equation 

A$ + k 2 $  = 0, (2.1) 

where k = w / c  is the wavevector. According to a hard-wall potential at the corrugated 
surface z = D ( R ) ,  the wavefunction has to vanish on the boundary 

* ( R ,  W R ) )  = 0. ( 2 . 2 )  

By superposition of plane waves, the solution is 

$ ( R ,  z)  = exp(iK3 * R + zklzz) +c AGexp(iKG. R + ikGzz), (2.3) 
C 

with k, = ( K z ,  k , , ) ,  the incident k-vector decomposed into a component K ,  parallel to 
the (asymptotic) surface and one perpendicular to it, k,,. The sum goes over all scattered 
waves numbered by the reciprocal surface lattice vector G, with k-vector kG = (KG, kGz)  
and beam amplitude AG. In order to guarantee surface periodicity 

(2.4) $ ( R  +Rn, z)=exp(iKt .  Rn)$(R, z), 

(2.3) becomes 

+ ( R ,  z)  = exp(iK, - R )  exp(ik,,z) +E AG exp(iG.  R + ik,,z) 
G 

and the boundary condition is 

A, exp(iG.  R +ikGZD(R)) = -exp(-ik,,D(R)), (2.6) 
G 

where, because of Ik,l= lkcl and kG = K,  + G, 

kGZ = 
[ kf - ( Ki + C)‘]”’ 
i[(K, + G)’ -  k3”’ 

for IK, + GI < k,, i.e. in the Ewald sphere EW, 
outside EW. (2.7) 

Since the sum in ( 2 . 5 )  extends over infinitely many G-vectors, the scattered beams 
with real kGz and the evanescent waves for z + +a with imaginary kc,, its convergence 
is, in general, an open question. 

It will now be shown that the eikonal approximation (Garibaldi et a1 1975) applied 
to very large G-vectors (in contrast to its usual application range with G E EW) gives 
the correct asymptotic solution. The eikonal approximation is 

r 
AG = A - ’  J d R  exp[-iG. R-i(kcz + k O z ) D ( R ) ] ,  

( A )  

where the integral should be extended symmetrically over the unit cell: any other 
choice gives only an arbitrary phase factor for AG, which is irrelevant for the intensities 
(scattering probabilities) 

pc = (kGZ/kOZ)lAGl2. (2.9) 

According to the conservation of the particle currents, the unitarity condition, i.e. 
Z G  Pc = 1,  should be fulfilled. 
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3. Evaluation of the asymptotic scattering amplitudes from the eikonal integral 

The double sum of the scattered waves $,, has to be convergent for the Rayleigh ansatz 
to hold. Its asymptotic parts depend on the direction g = G /  G, since in the double 
sum G goes to infinity, i.e. G = gG with G + +CO. The eikonal integral is evaluated as 
an integral over the complex variables x and y by the saddle-point method. It has to 
be extended to the complex plane with x = x, +ix2 and y = y ,  +iy2, where xI ,  y1  are 
the real and x2, y ,  the imaginary parts of x, y. For simplicity, we consider a rectangular 
surface lattice with lattice constants U ,  and u2.  Because of the integrand periodicity, 
the complex line integral 

(3.1) 

and analogously for dy. Therefore, the path of integration from -a , /2  to a1/2  in x 
can be extended to a U-like shape in the complex x-plane with -al/2,  a1 /2  being the 
basis of the U-like path. The U-shaped path has to go to -CO or cx), if G, is positive 
or negative, respectively, to define a convergent integral, since exp[-iG,(x, +ix2)] = 
exp( -iGxxl + G,x2) has to go to zero. The same holds for the complex integral in the 
complex y-plane. 

Because of the regularity of the integrand (entire function), these U-shaped ways 
can be deformed and eventually be guided through the saddle points of the integrand. 
For large G, the eikonal integral becomes 

(3.3) 

(3.4) 

where use has been made of kGr - i( G + ( K , ,  g) )  +0( 1 /  G )  following from (2 .7)  for 
large G. 

The saddle points are given by the condition of stationary phase, i.e. 

G-’ aF,/aR=(-ig+aD/aR) =0 ,  (3.5) 

defining a set of complex solutions R’ (s = 1,2, . . . , S )  depending on g, the asymptotic 
direction. 

The asymptotic value of the eikonal integral therefore becomes 

where the integration path has to be led along C,, the valley-to-valley path through 
the saddle point. The main contribution comes from the close vicinity of R’ only. 
The remaining Gauss integral is easily found to be 
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If 

Re(a2FG/dx2) <0,  

Re[a2FG/ay2 - ( a ’ ~ ~ / a x a y ) ~ / (  a’ FG/ax2)] < 0, 

the conditions of C, to be a valley-to-valley path through the saddle point R’ are 
fulfilled. 

Apart from a factor (3.7), the different saddle points contribute to a geometrical 
series by its exponential term exp[F,(R’)]. The term with the largest ReF‘(R’), i.e. 
for s = d  with 

max Re FG(R’) = Re F G ( R d ) ,  (3.10) 

gives the dominant saddle point Rd. Therefore the eikonal integral for large G yields 

(3.1 1 )  

where the phase factor is defined up to an irrelevant sign in front of the square root. 
Inserting this result into (2.5) gives, for the asymptotical (G  >> 1) part of the scattered 
wavefunction, 

constant 
+,,-exp(iKi. R )  E‘----- exp[(-ig *Rd + D ( R d ) ) G  

G G  

+(g .  Kz- iko , )D(Rd)+iG.  R - G z ]  (3.12) 

which is majorised, apart from a G-independent factor, by the series 

1‘ constant exp( -ig * Rd + D ( R d  - Dmin)G (3.13) 

for all z >  Dmin, the absolute minimum of 0, i.e. in the whole range of the solution. 
The prime on the sum indicates that finite G are omitted, i.e. only the asymptotical 
contributions, which are responsible for convergence, have to be taken. The Rayleigh 
ansatz is therefore convergent if the majorant converges, i.e. if 

Re(D(Rd)- ig .  Rd -Dmin)s0.  (3.14) 

The convergence limit is given by the equality sign in (3.14), since the sum (3.12) then 
becomes divergent for all R. 

The conditions for convergence of the Rayleigh ansatz are given by (3.5) defining 
the saddle point Rs (s = 1,2, .  . . , S ) ,  by (3.10) defining the dominant saddle point Rd, 
contributing most to the integral, and by (3.14) defining the convergence limit. These 
equations are identical to the ones given by Hill and Celli (1978) indicating that the 
eikonal formula yields the correct scattering amplitudes in the limit of large G vectors. 

Since the saddle points R’(g) are complex and depend on g, the following symmetry 
relation holds: 

R’(-g) = (R’(g))*, (3.15) 

i.e. it is generally sufficient to consider only the range gx>O, which simplifies the 
problem considerably. It is also possible to use the symmetry of the lattice for further 
simplification. In a square lattice with g = (cos y, sin y )  for example, y can be restricted 

G 
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to the range (0, 7r/4). Since the saddle points depend on y, the dominancy may change 
from one saddle point to another if y is varied. 

In order to find the convergence limit, it is expedient to look for a maximal multiplier 
H, the convergence factor of a class of similar profiles 

D(R) = h d ( R ) ,  (3.16) 

where d ( R )  is a suitably normalised unit form of the corrugation function, and h > 0. 
Without corrugation, i.e. for the plane surface with h = 0, there is only a specular 
beam, and the convergence is trivial. If h becomes larger, more G-terms are involved 
in the sum, and in particular the spread of AG becomes larger, which finally leads to 
a limit of convergence given by (3.5), (3.10) and (3.14). 

In principle, it would be possible, instead of (3.16), to discuss the convergence as 
a function of the coefficients of a general Fourier series of D ( R ) ,  but in this case it is 
difficult to see the entirety of solutions and the range in which the Fourier coefficients 
are allowed to vary. 

We want to discuss the one-dimensional case in more detail in the next sections. 

4. Explicit convergence conditions for one-dimensional profiles 

The corrugation function is assumed to be of the form (3.16), (with x instead of R ) ,  and 

a 
2 m x  

d ( x ) =  f 
n = I  a 

with CY, = 1, P I  = 0, since a constant is irrelevant for scattering and the lowest sine term 
can be absorbed by translational invariance. Supposing g = 1 ,  the conditions for h 
become (’= d/dx: x = xI  six,)  

F (x l ,  x,) = Re d’(x) = 0, 

Im d‘(x) = l / h ,  

h Re d ( x )  +x2 = max, 

G(x l ,x2 )=x21m d‘ (x )+Re  d(x)-d, , ,sO. (4.5) 

Since Im d’(x) is odd and Re d (x )  even in x2, (4.5) defines symmetric saddle points 
x1 *ix2. Figure 1 shows the unit corrugation d ( x )  for a,=O.l ,  pZ=O.2, a3=0.3,  and 
,B3 = 0.4 and below the complex x-plane, with the curves F = 0 (broken) and G = 0 
(full). The saddle points are their intersections, and additionally there exists an isolated 
point solution for x? = xmin, the position of the absolute minimum of d(x) ,  and x: = 0. 
More details on the curves F = 0 and G = 0 are discyssed in the appendix. For G > 0, 
the U-shaped contour opens to - i a ,  and the saddle points will be connected by the 
deformed contour. Equations (4.2), (4.3) and (4.5) give solutions xs, h s  for s = 1,2,3 
with G l h l  = 0.14, GI h 2  = 0.23 and G,  h3 = 0.37, where G I  is the primitive reciprocal 
lattice vector. Using (4.4), it can easily be seen that s = 1 gives the dominant solution, 
i.e. H = h ’ .  As shown in van den Berg and Fokkema (1979), the smallest h” belongs 
to the dominant saddle point, i.e. 

H = h d  = min h”. 
S 

(4.6) 
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ci, xi 

Figure 1. A corrugation with Fourier coefficients (1,0), (0.1,0.2), (0.3,0.4) (upper half) 
and the curves F = 0 (broken) and G = 0 (full) with saddle points at intersections in the 
complex x-plane (lower half). The leftmost saddle is dominant and G, = 2 ~ r / a .  

The number of saddle points S increases with N, the number of Fourier terms in the 
corrugation, and it seems that S = N. 

In 0 5, we introduce convergence parameters, which hopefully vary slowly for 
various profiles. 

5. Examples of one-dimensional profiles 

Our method, which applies to all corrugations, will be used for Fourier series with 
N = 2 rather generally. In case (a), we assume p2 = 0, in case (b), a2 = 0, and for the 
general case (c), we give a table for the values - 1 < a2 < 1 and 0 < p2 < 1 in intervals 
of 0.2. 

Figure 2 represents the complex x-plane for case (a) (full curve) and case (b) 
(broken curve). Since D is invariant for x +  -x, if /3 is replaced by -p,  the saddle 
point in cases (b) and (c) will be symmetric with respect to the ordinate. There is no 
symmetry of this kind for case (a),. but the saddle points are purely imaginary for 
a > a ,  = -0.030 67, and for a < a,  they become complex, tending for a + +a to a value 
which corresponds to a lattice with half the lattice constant when compared with the 
Millar (1969, 1971) value a = p = 0. 

In figure 3, the dimensionless convergence factor K = G, H, the relative corrugation 
amplitude ( RCA) 

P ( D m a x -  D m i n ) / a  = ( d m a x -  d m i n ) H / a  (5.1) 

and the normalised convergence parameters (NCP) K ~ ,  K ~ ,  p ,  and p2 are presented as 
functions of a2 or p2-all for the dominant saddle point. The latter are defined by 

K I  = C l K ,  (5.2) 
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Figure 2. The saddle points in the complex x-plane for N = 2 with (a )  a2 = a, pz = 0 (full), 
and for (b) a2 = 0, p2 = p (broken); the latter is symmetric for p 4 -p  with respect to the 
ordinate. 

t 

0 1 
a ,P 

-1 

Figure 3. The dominant convergence parameters K ,  p and their normalised forms K ~ ,  K , ,  

p , ,  and p2 as a function of az = a for case (a) (full curves), or as a function of p2 = p for 
case (b) (broken curves). 

where 

extends over all Fourier coefficients of the corrugation function (4.1). As mentioned 
earlier, the curves are symmetric as a function of p (broken), whereas as a function 
of (Y (full), they exhibit a maximum p, = 0.176 52 for a, = -0.064 55. These symmetry 
properties are well understood by the shapes of the profiles, which in case (b) lead to 
the same profiles for p + -p, when also 8, + -ei is replaced. In case (a), the saddle 
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points occur in pairs (x, -x)  because of d(-x)  = d(x ) .  Since the corrugation for 
a + -a changes in essence, e.g. becomes flatter in the maximum (for - a  < a < 0), the 
convergence parameters should also change. 

Table 1 represents the values of the absolute extrema of d ( x ) ,  the position of the 
dominant saddle point 2.rrxS/a for s = d = 1,  and the convergence parameters K and 
p. The last four columns give the NCPS K ~ ,  K ~ ,  pI and p2 defined above. It can be seen 
that p2, in particular, behaves nearly like a constant, when the ratio of maximum to 
minimum is considered for the last six columns. In order to have a measure which is 
nearly independent of the scale, the quantities K !  and p1 have been introduced. In 
particular, the p,'s have asymptotic values for a2 + *CC or p2 + fa, which are equal 
to the Millar value and deviate only by a small amount (-25% for p 2 )  from the mean 
value, whereas the deviations of K ,  are rather large, not to mention K ,  which may 
become arbitrarily small if large contributions come from higher Fourier coefficients. 

It is the purpose of these considerations to find a quantity which for general 
corrugation functions does not vary too strongly; p ,  and pz have this property-at 
least for profiles which are given only by the lowest few Fourier terms, which are the 
cases of physical interest. In order to test also its limiting behaviour for N + CO, a few 
non-analytic profiles are considered in 0 6. 

6. Convergence parameters for piecewise linear surface profiles 

The one-dimensional surface is defined by figure 4. It coincides with the rectangular 
profile for q = 0 and the triangular for q = 1 whose convergence factor has been 
discussed in van den Berg and Fqkkema (1979). The Fourier series for general q 
( O s q s l )  is 

X 4 sin +.rrq(21+ 1 )  2 7Tx 
cos (21 + 1)  -. 

d ( x ) =  1=0 c ( - 1 ' 5  (21+1)2 a 
(6.1 ) 

In order to apply the saddle-point method, we take analytic approximations which are 
identical to the partial sums d N ( x )  with N = 21,,, + 2 .  

dlx i  

Figure 4. A piecewise linear corrugation with q E (0, 1) becoming rectangular for q = 0 and 
triangular for q = 1. 

The convergence parameters can be found with an iterative procedure, since the 
saddle points practically do not change for large N-values. It was possible to determine 
the asymptotical behaviour of h for q = 0 and q = 1, i.e. for the rectangular and the 
triangular corrugations. 

For q = 0, the results could numerically be shown to behave like 

h -constant p - a,/ N +az/  N3 + a 3 /  N5 +. . . , (6.2) 
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whereas for the triangular profile, the prevailing term for large N was 

h -constant p - N-’(a ,  In N + b l ) ,  (6 .3)  

1 1 3  4, 2,  4) leads to an oscillation of h or their lowest-order differences, indicating that the 
where the next order leads to a numerical estimate of N-5’3. Any q in between (e.g. 

asymptotes contain oscillating terms like the Fourier series (6.1) and do not obey a 
simple asymptotic formula. 

It is very intuitive to relate the non-analyticity to the smallest radius of the curvature 
k, and to look for a connection between k and h. The smaller k, the smaller h will 
be, since k and h decrease with increasing N. Because of the ncn-uniform convergence 
for q = 0, the well known Gibbs phenomenon occurs for large N, and the point with 
largest curvature will be in an overshooting peak close to the discontinuity (Sommerfeld 
1947) and as such not representative for the curvature in the (continuous) edges. 

Such an edge is in the triangular profile for x = 0, which for all partial sums exhibits 
a maximum. By symmetry, it is plausible that in this point, the curvature has a 
maximum, giving d” (0 )  = constant N. Therefore the radius of curvature k = constant 
N, and we get the relations 

(6.4) 

(6.5) 

for large N or k going to zero. This shows that there is no linear relation between 
the smallest curvature of the corrugation and the convergence parameters h or p. 

This relation can be used to distinguish an NCP, which is nearly invariant also in 
the limit N -$ CO. Since for the triangular profile aN = 4/ r 2 N 2  for all odd and aN = 0 
for even Fourier terms, the partial sums (5.3) become asymptotically - constant, 
uI - constant lnN, and v2 - constant N. Therefore the NCP p ,  - constant ( lnN)*/ N 
tends to zero, whereas pz - constant for N + E. The second NCP p2 has the property 
of a pseudoinvariant for all N, i.e. it is also nearly invariant, as found by analysing 
the results of the profile (6.1) for q = 0, a, f ,  a and 1. The same seems to be true for 
profiles with continuous slope but discontinuous second derivative (sectors with con- 
stant and parabolic d (x)). 

h -constant p -constant ( lnN) /  N, 

h - constant p - constant k In( 1 /  k ) ,  

7. Conclusion 

The convergence-limit equations of Hill and Celli (1978) are shown to follow from 
the eikonal approximation of the scattering problem; it gives the correct asymptotics 
of the scattering amplitudes for G+co, though it was originally introduced as an 
approximation within the Ewald circle. 

The asymptotic evaluation of the scattering amplitudes leads to many saddle points, 
the one giving the main contribution to AG being the dominant saddle point, which 
can be characterised by having the smallest convergence factor H. Since H strongly 
depends on the normalised profile function d,  or its Fourier coefficients, the relative 
corrugation amplitude p and its normalised forms p I  and p2 have been introduced. 
Though p depends on the lattice constant, p ,  and p2 do not. In particular p2 (in 
contrast to p I )  is also independent of the number of terms used for an analytic 
approximation by truncated Fourier series of trapezoidal profiles. The convergence 
parameter p2 is a pseudoinvariant for a wide range of corrugation functions. It can 
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therefore be used to estimate the convergence factor H roughly by the Fourier 
coefficients of its corrugation functions. Of all cases considered here, case (a) gives 
the widest range of possible p2 values, varying roughly from 0.12 to 0.20; this range 
is also valid for a three-term cosine corrugation with (Y I = 1, a2 E ( -  1 ,  1 ) and a3 E (- 1, 1 ), 
but it cannot be excluded that, especially for larger N, this range has to be extended. 
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Appendix 

To simplify formulae, z = 2.rrx/a is introduced; for the finite Fourier series, we then have 
.v N 

d ( z )  = 1 d , ( z )  = 2 a,  cos nz + p n  sin nz, 
“=I  n = I  

with z = x +iy (do not confound with x above), 
N 

F ( x ,  y )  = d ’ , ( x )  cosh ny = 0, 
n = l  

N N 

G ( x ,  y )  = -y  n d n ( x )  sinh ny + c d n ( x )  cosh ny - dmin = 0, 
n = I  n = l  

both even functions in y.  Since F( x,, 0) = d’( x , )  = 0 for all extrema x ,  ( e  = 1,2, 
2 N ) ,  an expansion for small y is 

Y 2  N 

F ( x ,  y )  = C d ; ( x )  +- n 2 d ; ( x )  = 0 ,  
n = l  2 n = I  

giving 

y ( 2 d ’ ( ~ ) / d ” ’ ( ~ ) ) ” ~  = [ ( ~ ~ ” ( x , ) / ~ ” ’ ( x , ) ) ( x - x , ) ] ~ ’ ~ .  

For the absolute minimum x = xmin and y = 0, F = G = 0, and for small y ,  

G ( x ,  y )  = d ( x )  - dmin +fy2 d ” ( x ) ,  

and for x = = x m i n  

. . .  

The behaviour for large y is determined by the last few terms in the Fourier series, 
e.g. 

N 

F ( x ,  y )  - C d L ( x )  eny/2 = 0, (A81 
n = l  

giving 

ey - - d h - , ( x ) / d h ( x ) ,  (-49) 
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with the F-asymptote xF following from 

i.e. 

x F  = m / N  + t a n - ' ( P N / a N ) ,  n = 0 , 1 ,  . . . ,  2 N - 1 .  (A1 1 )  

In analogy, 
N N 

G ( x ,  y )  - - y  1 nd,(x) eny/2  + 1 d , ( x )  e"'/2 =0,  
n = I  n = I  

with the G-asymptote xG following from 

dN(xc )  = O ,  ('414) 

i.e. 

XG= T ( n  +f)/N+tan- '(PN/(YN), n = O , l ,  . . . ,  2 N - 1 .  (A15)  

The asymptotes of G lie in between the asymptotes of F (see figure 1 ) .  
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