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On the convergence of the Rayleigh ansatz for hard-wall
scattering on arbitrary periodic surface profiles

W A Schlup
IBM Zurich Research Laboratory, 8803 Riischlikon, Switzerland

28 February 1983, in final form 6 March 1984

Abstract. The plane-wave ansatz for the scattered waves is convergent only if, roughly
speaking, the surface profile is (i) not too deep and (ii) sufficiently smooth. This convergence
isinvestigated for general one-dimensional corrugations by means of an asymptotic analysis.
The results are explicitly given for a three-term Fourier series and for analytic approximations
to linear profiles with discontinuous slopes. A relation between the convergence and the
maximal curvature is established for triangular corrugations, and used for the definition
of a pseudoinvariant which is slowly varying for various corrugation profiles.

1. Introduction

The scattering of waves from a corrugated surface was first studied by Rayleigh using
a plane-wave ansatz. This so-called Rayleigh hypothesis is only valid if the periodic
corrugation is not too steep. Petit and Cadilhac (1966) were the first to prove that the
Rayleigh ansatz diverges for a sinusoidal corrugation, when the ratio depth to period
2h/a>0.1425. Later, Millar (1969, 1971) proved that this is exactly the limit of
convergence, and that below this limit the Rayleigh hypothesis is valid. In 1978, Hill
and Celli used an asymptotic evaluation of the scattering amplitudes to discuss the
convergence of the plane-wave ansatz to the solution of the Helmholtz equation. They
found the limit of the two-dimensional sinusoidal profile to be 2h/a =0.592. Van den
Berg and Fokkema (1979) investigated the convergence for gratings with periodic
profiles exhibiting discontinuous slopes by using analytic approximations with finite
Fourier series. In a later paper (van den Berg and Fokkema 1980) they extended these
results to non-periodic profiles as given by a perturbation in a plane surface.

The purpose of this paper is (1) to show that the same conditions for convergence
found by Hill and Celli can be derived from the eikonal approximation of the scattering
problem; (2) to use the approach of Hill and Celli to explain the influence of the
different profile parameters on the convergence limit for some typical profile functions;
(3) to find a convergence parameter (other than h/a) allowing estimation of the
convergence limit from Fourier coefficients and/or simple geometrical characteristics
like the minimum radius of curvature or the maximal amplitude of the corrugation.
Though an exact criterion for the limit of the convergence cannot be proved, a rough
estimate is possible since a nearly constant or slowly varying convergence parameter,
a pseudoinvariant, can be defined.
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2. Definitions and mathematical preliminaries

The wavefunction ¢(R, z) with R =(x, y) should satisfy the Helmholtz equation
Ay +K =0, (2.1)

where k = w/c is the wavevector. According to a hard-wall potential at the corrugated
surface z = D(R), the wavefunction has to vanish on the boundary

Y(R, D(R))=0. (2.2)

By superposition of plane waves, the solution is
(R, z) =exp(iK,* R +ik.,z) +Y. Agexp(iKg -+ R +ikg,z), (2.3)
G

with k, = (K, k;.), the incident k-vector decomposed into a component K, parallel to
the (asymptotic) surface and one perpendicular to it, k;.. The sum goes over all scattered
waves numbered by the reciprocal surface lattice vector G, with k-vector kg = (K¢, k¢, )
and beam amplitude A¢;. In order to guarantee surface periodicity

‘//(R+Rn, z)=exp(iKi. Rn)w(R’ Z), (24)

(2.3) becomes

(R, z) =exp(iK, - R)<exp(ik,zz) +; Ag exp(iG- R+ ikczz)>, (2.5)
and the boundary condition is

; Ag exp(iG- R +ikg,D(R)) = —exp(—iko,D(R)), (2.6)

where, because of |k|=|k¢| and k¢ = K; + G,

B {[k,2 —(K;+G)*)"? for |K, + G| < k, i.e. in the Ewald sphere EW,

7K +G) - k2 outside EW. 27

Since the sum in (2.5) extends over infinitely many G-vectors, the scattered beams
with real k¢, and the evanescent waves for z » +00 with imaginary k., its convergence
is, in general, an open question.

It will now be shown that the eikonal approximation (Garibaldi et al 1975) applied
to very large G-vectors (in contrast to its usual application range with G € EW) gives
the correct asymptotic solution. The eikonal approximation is

AG=A“J dR exp[—iG R —i(kg, +ko,) D(R)], (2.8)
(A)

where the integral should be extended symmetrically over the unit cell; any other
choice gives only an arbitrary phase factor for Ag, which is irrelevant for the intensities
(scattering probabilities)

PG = (kGZ/kOZ)lAG|2' (29)

According to the conservation of the particle currents, the unitarity condition, i.e.
3¢ Pc =1, should be fulfilled.
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3. Evaluation of the asymptotic scattering amplitudes from the eikonal integral

The double sum of the scattered waves ¢, has to be convergent for the Rayleigh ansatz
to hold. Its asymptotic parts depend on the direction g = G/G, since in the double
sum G goes to infinity, i.e. G = gG with G - +00. The eikonal integral is evaluated as
an integral over the complex variables x and y by the saddle-point method. It has to
be extended to the complex plane with x = x, +ix, and y =y, +iy,, where x,, y, are
the real and x,, y, the imaginary parts of x, y. For simplicity, we consider a rectangular
surface lattice with lattice constants @, and a,. Because of the integrand periodicity,
the complex line integral

_[ dx = J d(ix,) = J d(ix,) (3.1)
x,=0 X,=0
(x,=—a‘/2) (x]:al/Z)

and analogously for | dy. Therefore, the path of integration from —a,/2 to a,/2 in x
can be extended to a U-like shape in the complex x-plane with —a,/2, a,/2 being the
basis of the U-like path. The U-shaped path has to go to —o or o, if G, is positive
or negative, respectively, to define a convergent integral, since exp[—iG.(x, +ix,)]=
exp(—iG,x, + G,x,) has to go to zero. The same holds for the complex integral in the
complex y-plane.

Because of the regularity of the integrand (entire function), these U-shaped ways
can be deformed and eventually be guided through the saddle points of the integrand.
For large G, the eikonal integral becomes

Ag= L dx dy exp[Fg(x, y)], (3.2)
Fg(x,y)=(—ig- R+ D(R))G + Fy(x, y), (3.3)
Fo(x,y)=(g* K, —ik,,) D(R), (3.4)

where use has been made of kg, ~i(G +(K, g)) +O(1/G) following from (2.7) for
large G.

The saddle points are given by the condition of stationary phase, i.e.
G '3Fg/oR=(~ig+3D/3R) =0, (3.5)

defining a set of complex solutions R* (s=1,2, ..., S) depending on g, the asymptotic
direction.
The asymptotic value of the eikonal integral therefore becomes
2 9*Fg

Ac~ dx d Fs(R® +l( _—C
G ;J'cj X yexp[ c(R*) +3 o5 3R, 3R,

(Ra_Ri)(RB_R%))]9 (36)
R
where the integration path has to be led along C,, the valley-to-valley path through
the saddle point. The main contribution comes from the close vicinity of R® only.
The remaining Gauss integral is easily found to be

_ 1/2 1/2
f dx dy exp(if ])=( 2n ) ( i ) (3.7)
c 8*F¢/ox* 3’ Fg/ay* —(8°Fg/oxay)*/(8*F/ox?)) '
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If
Re(8’Fg/0x?) <0, (3.8)
Re[8°Fg/0y* — (8*Fg/oxdy)?/(8°Fg/0x*)] <0, (3.9)

the conditions of C, to be a valley-to-valley path through the saddie point R® are
fulfilled.

Apart from a factor (3.7), the different saddle points contribute to a geometrical
series by its exponential term exp[F¢(R®)]. The term with the largest Re F¢(R*), i.e.
for s =d with

max Re Fo(R*) =Re Fo(RY), (3.10)

gives the dominant saddle point R. Therefore the eikonal integral for large G yields
27

|[(8°F6/8x7)(8° Fg/3y*) — (8" F/ 9%y ) lr=r+|"""

where the phase factor is defined up to an irrelevant sign in front of the square root.

Inserting this result into (2.5) gives, for the asymptotical (G > 1) part of the scattered
wavefunction,

Ag ~exp[Fg (R")]

(3.11)

o expliK;- R) T 2 expl(~ig -R? + D(R*))G
G
+(g+ K, —iks,) D(R?)+iG - R — Gz] (3.12)

which is majorised, apart from a G-independent factor, by the series
Y constant exp(—ig+ R* + D(R?)~ Dpin) G (3.13)
G

for all z> D, the absolute minimum of D, i.e. in the whole range of the solution.
The prime on the sum indicates that finite G are omitted, i.e. only the asymptotical
contributions, which are responsible for convergence, have to be taken. The Rayleigh
ansatz is therefore convergent if the majorant converges, i.e. if

Re(D(R%)-ig-R*-D,,;,)<0. (3.14)

The convergence limit is given by the equality sign in (3.14), since the sum (3.12) then
becomes divergent for all R.

The conditions for convergence of the Rayleigh ansatz are given by (3.5) defining
the saddle point R* (s=1,2,..., S), by (3.10) defining the dominant saddle point R,
contributing most to the integral, and by (3.14) defining the convergence limit. These
equations are identical to the ones given by Hill and Celli (1978) indicating that the
eikonal formula yields the correct scattering amplitudes in the limit of large G vectors.

Since the saddle points R°(g) are complex and depend on g, the following symmetry
relation holds:

R’(-g)=(R*(g)*, (3.15)

i.e. it is generally sufficient to consider only the range g, >0, which simplifies the
problem considerably. It is also possible to use the symmetry of the lattice for further
simplification. In a square lattice with g = (cos ¥, sin y) for example, y can be restricted
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to the range (0, w/4). Since the saddle points depend on v, the dominancy may change
from one saddle point to another if y is varied.

In order to find the convergence limit, it is expedient to look for a maximal multiplier
H, the convergence factor of a class of similar profiles

D(R)= hd(R), (3.16)

where d(R) is a suitably normalised unit form of the corrugation function, and h > 0.
Without corrugation, i.e. for the plane surface with 4 =0, there is only a specular
beam, and the convergence is trivial. If h becomes larger, more G-terms are involved
in the sum, and in particular the spread of A becomes larger, which finally leads to
a limit of convergence given by (3.5), (3.10) and (3.14).

In principle, it would be possible, instead of (3.16), to discuss the convergence as
a function of the coefficients of a general Fourier series of D(R), but in this case it is
difficult to see the entirety of solutions and the range in which the Fourier coefficients
are allowed to vary.

We want to discuss the one-dimensional case in more detail in the next sections.

4. Explicit convergence conditions for one-dimensional profiles

The corrugation function is assumed to be of the form (3.16), (with x instead of R), and

N 2
dix)=Y (a,, cos an-%Bn sin 27:“) (4.1)
1

n=

with a; =1, 8, =0, since a constant is irrelevant for scattering and the lowest sine term
can be absorbed by translational invariance. Supposing g =1, the conditions for h
become ('=d/dx: x = x, +ix,)

F(x,, x,)=Red'(x)=0, (4.2)
Imd'(x)=1/h, (4.3)
h Re d(x) +x, = max, (4.4)
G(x),x)=x,Imd'(x)+Re d(x)-d_;,<0. (4.5)

Since Im d'(x) is odd and Re d(x) even in x,, (4.5) defines symmetric saddle points
x;xix,. Figure ! shows the unit corrugation d(x) for a,=0.1, 8,=0.2, a3=0.3, and

3=0.4 and below the complex x-plane, with the curves F=0 (broken) and G=0
(full). The saddle points are their intersections, and additionally there exists an isolated
point solution for x} = x,,;,,, the position of the absolute minimum of d(x), and x3=0.
More details on the curves F =0 and G =0 are discussed in the appendix. For G>0,
the U-shaped contour opens to —ico, and the saddle points will be connected by the
deformed contour. Equations (4.2), (4.3) and (4.5) give solutions x*, h° for s=1,2, 3
with Gh'=0.14, G,h*=0.23 and G,h’=0.37, where G, is the primitive reciprocal
lattice vector. Using (4.4), it can easily be seen that s =1 gives the dominant solution,
i.e. H=h'. As shown in van den Berg and Fokkema (1979), the smallest h° belongs
to the dominant saddle point, i.e.

H=h= min k" (4.6)
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Figure 1. A corrugation with Fourier coefficients (1,0), (0.1,0.2), (0.3, 0.4) (upper half)
and the curves F =0 (broken) and G =0 (full) with saddle points at intersections in the
complex x-plane (lower half). The leftmost saddle is dominant and G, =2%/a.

The number of saddle points S increases with N, the number of Fourier terms in the

corrugation, and it seems that $= N.
In § 5, we introduce convergence parameters, which hopefully vary slowly for

various profiles.

5. Examples of one-dimensional profiles

Our method, which applies to all corrugations, will be used for Fourier series with
N =2 rather generally. In case (a), we assume B,=0, in case (b), a,=0, and for the
general case (c), we give a table for the values —1 <a,<1 and 0<B,<1 in intervals
of 0.2.

Figure 2 represents the complex x-plane for case (a) (full curve) and case (b)
(broken curve). Since D is invariant for x > —x, if B8 is replaced by —p, the saddle
point in cases (b) and (c) will be symmetric with respect to the ordinate. There is no
symmetry of this kind for case (a), but the saddle points are purely imaginary for
a> a.=-0.030 67, and for a < a. they become complex, tending for a - £ to a value
which corresponds to a lattice with half the lattice constant when compared with the

Millar (1969, 1971) value a = 8 =0.
In figure 3, the dimensionless convergence factor k = G, H, the relative corrugation

amplitude (rCA)

p =(Dmax~ Diyin)/ 8 = (dmax = dmin) H/ @ (5.1)
and the normalised convergence parameters (NCP) kg, K, p; and p, are presented as
functions of a, or 8,—all for the dominant saddle point. The latter are defined by
(5.2)

K| = OK,
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Figure 2. The saddle points in the complex x-plane for N = 2 with (a) @, = a, B, =0 (full),
and for (b) @, =0, 8, = B (broken); the latter is symmetric for 8 » —B with respect to the
ordinate.

0
o,B
Figure 3. The dominant convergence parameters «, p and their normalised forms g, ),

p1, and p, as a function of &, = & for case (a) (full curves), or as a function of 8,= B for
case (b) (broken curves).

pr=(o/o._)p, (5.3)

where

N
o= L n'(laal +1B4) (5.4)
extends over all Fourier coeficients of the corrugation function (4.1). As mentioned
earlier, the curves are symmetric as a function of B (broken), whereas as a function
of a (full), they exhibit a maximum p,, =0.176 52 for a, = —0.064 55. These symmetry
properties are well understood by the shapes of the profiles, which in case (b) lead to
the same profiles for 8 » —B, when also 6, > —#; is replaced. In case (a), the saddle
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points occur in pairs (x, —x) because of d(—x)=d(x). Since the corrugation for
a —» —a changes in essence, e.g. becomes flatter in the maximum (for —§< a <0), the
convergence parameters should also change.

Table 1 represents the values of the absolute extrema of d(x), the position of the
dominant saddle point 27x°/a for s =d =1, and the convergence parameters x and
p. The last four columns give the NCPs kg, k|, p, and p, defined above. It can be seen
that p,, in particular, behaves nearly like a constant, when the ratio of maximum to
minimum is considered for the last six columns. In order to have a measure which is
nearly independent of the scale, the quantities «; and p, have been introduced. In
particular, the p,’s have asymptotic values for a,—» 0 or 8, o0, which are equal
to the Millar value and deviate only by a small amount (~25% for p,) from the mean
value, whereas the deviations of «; are rather large, not to mention , which may
become arbitrarily small if large contributions come from higher Fourier coefficients.

It is the purpose of these considerations to find a quantity which for general
corrugation functions does not vary too strongly; p, and p, have this property—at
least for profiles which are given only by the lowest few Fourier terms, which are the
cases of physical interest. In order to test also its limiting behaviour for N > o, a few
non-analytic profiles are considered in § 6.

6. Convergence parameters for piecewise linear surface profiles

The one-dimensional surface is defined by figure 4. It coincides with the rectangular
profile for g =0 and the triangular for ¢ =1 whose convergence factor has been
discussed in van den Berg and Fokkema (1979). The Fourier series for general g
(0<sg<1)is

&4 sinimgQ2l+1) 2mx
d(x)_:;o( )#Zq—__(2l+1)2 cos (21 +1) — (6.1)

In order to apply the saddle-point method, we take analytic approximations which are
identical to the partial sums dy(x) with N=21_,, +2.

dlx)

12

i +glals /
i X

-alk 0 T al2 a
g 0-@ian

Figure 4. A piecewise linear corrugation with g (0, 1) becoming rectanguliar for g =0 and
triangular for g = 1.

The convergence parameters can be found with an iterative procedure, since the
saddle points practically do not change for large N-values. It was possible to determine
the asymptotical behaviour of h for g =0 and g =1, i.e. for the rectangular and the
triangular corrugations.

For g =0, the results could numerically be shown to behave like

h~constant p~a,/N +a,/ N> +a;/ N°+. .., (6.2)
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whereas for the triangular profile, the prevailing term for large N was

h~constant p~ N '(a,In N +b,), (6.3)

where the next order leads to a numerical estimate of N~%/3

. Any g in between (e.g.
1,3,3) leads to an oscillation of h or their lowest-order differences, indicating that the
asymptotes contain oscillating terms like the Fourier series (6.1) and do not obey a
simple asymptotic formula.
It is very intuitive to relate the non-analyticity to the smallest radius of the curvature
k, and to look for a connection between k and hA. The smaller k, the smaller h will
be, since k and h decrease with increasing N. Because of the non-uniform convergence
for g =0, the well known Gibbs phenomenon occurs for large N, and the point with
largest curvature will be in an overshooting peak close to the discontinuity (Sommerfeld
1947) and as such not representative for the curvature in the (continuous) edges.
Such an edge is in the triangular profile for x = 0, which for all partial sums exhibits
a maximum. By symmetry, it is plausible that in this point, the curvature has a
maximum, giving d"(0) = constant N. Therefore the radius of curvature k = constant
N, and we get the relations

h ~ constant p ~ constant (InN)/ N, (6.4)
h ~ constant p ~ constant k In(1/k), (6.5)

for large N or k going to zero. This shows that there is no linear relation between
the smallest curvature of the corrugation and the convergence parameters h or p.

This relation can be used to distinguish an Ncp, which is nearly invariant also in
the limit N > 0. Since for the triangular profile ax =4/7°N? for all odd and ax =0
for even Fourier terms, the partial sums (5.3) become asymptotically oo~ constant,
o,~constant InN, and o,~ constant N. Therefore the Ncp p, ~constant (InN)?/ N
tends to zero, whereas p,~ constant for N »oc. The second NCP p, has the property
of a pseudoinvariant for all N, i.e. it is also nearly invariant, as found by analysing
the results of the profile (6.1) for g=0, 1, 3, 2 and 1. The same seems to be true for
profiles with continuous slope but discontinuous second derivative (sectors with con-
stant and parabolic d(x)).

7. Conclusion

The convergence-limit equations of Hill and Celli (1978) are shown to follow from
the eikonal approximation of the scattering problem; it gives the correct asymptotics
of the scattering amplitudes for G -, though it was originally introduced as an
approximation within the Ewald circle.

The asymptotic evaluation of the scattering amplitudes leads to many saddle points,
the one giving the main contribution to A; being the dominant saddle point, which
can be characterised by having the smallest convergence factor H. Since H strongly
depends on the normalised profile function d, or its Fourier coefficients, the relative
corrugation amplitude p and its normalised forms p, and p, have been introduced.
Though p depends on the lattice constant, p, and p, do not. In particular p, (in
contrast to p,) is also independent of the number of terms used for an analytic
approximation by truncated Fourier series of trapezoidal profiles. The convergence
parameter p, is a pseudoinvariant for a wide range of corrugation functions. It can
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therefore be used to estimate the convergence factor H roughly by the Fourier
coefficients of its corrugation functions. Of all cases considered here, case (a) gives
the widest range of possible p, values, varying roughly from 0.12 to 0.20; this range
is also valid for a three-term cosine corrugation with ¢, =1, @, € (=1, l) and a3 (-1, 1),
but it cannot be excluded that, especially for larger N, this range has to be extended.
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Appendix
To simplify formulae, z = 27x/ a is introduced; for the finite Fourier series, we then have
N N
d(z)= Y d.,(z)= Y a,cosnz+B,sin nz, (A1)
n=] n=1
with z=x +iy (do not confound with x above),

N
F(x,y)= Y du(x)coshny=0, (A2)
n=1

N N
G(x,y)=-y ¥ nd,(x)sinhny+ Y d,(x)coshny—d,,=0, (A3)
n=1

n=1|

both even functions in y. Since F(x,, 0) =d'(x.) =0forall extremax, (e=1,2,...,E=
2N), an expansion for small y is
N y2 N
Fx,y)= Y di,(X)+3 Y. n*d,(x)=0, (Ad4)
n=1 n=1
giving
y=(2d'(x)/d"(x))"?=[(2d"(x.)/d"(x,))(x — x.)]"/. (AS)
For the absolute minimum x = x_;, and y =0, F= G =0, and for small y,
G(x,y) =d(x) ~ dpin +3y* d"(x), (A6)
and for x = x,;,
G(xa }’) = %d"(xmin)[(-x _xmin)2 +y2], (A7)

i.e. (Xmin, 0) is an isolated zero of G =0.
The behaviour for large y is determined by the last few terms in the Fourier series,
e.g.

N
F(x,y)~ X d,(x)e”/2=0, (A8B)
n=1
giving

e’ ~—d_i(x)/dN(x), (A9)



Convergence of Rayleigh ansatz for hard-wall scattering

with the F-asymptote xr following from

d'n(xg) =0,
ie.
xp=mn/ N +tan" ' (Bn/an), n=0,1,...,2N-1.
In analogy,
N N i
Gix,y)~-y 3 nd,(x)e”/2+ Y, d,(x)e™/2=0,
n=1 n=1
giving

ye’~=[(N=1)/Nldy-i(x}/dn(x),
with the G-asymptote x following from

dn(xg) =0,
ie.

xg=7(n+3)/ N +tan ' (Bn/ an), n=0,1,...,2N—-1.
The asymptotes of G lie in between the asymptotes of F (see figure 1).
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